Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm.

نویسندگان

  • Sally L Dunwoodie
  • Melanie Clements
  • Duncan B Sparrow
  • Xin Sa
  • Ronald A Conlon
  • Rosa S P Beddington
چکیده

A loss-of-function mutation in the mouse delta-like3 (Dll3) gene has been generated following gene targeting, and results in severe axial skeletal defects. These defects, which consist of highly disorganised vertebrae and costal defects, are similar to those associated with the Dll3-dependent pudgy mutant in mouse and with spondylocostal dysplasia (MIM 277300) in humans. This study demonstrates that Dll3(neo) and Dll3(pu) are functionally equivalent alleles with respect to the skeletal dysplasia, and we suggest that the three human DLL3 mutations associated with spondylocostal dysplasia are also functionally equivalent to the Dll3(neo) null allele. Our phenotypic analysis of Dll3(neo)/Dll3(neo) mutants shows that the developmental origins of the skeletal defects lie in delayed and irregular somite formation, which results in the perturbation of anteroposterior somite polarity. As the expression of Lfng, Hes1, Hes5 and Hey1 is disrupted in the presomitic mesoderm, we suggest that the somitic aberrations are founded in the disruption of the segmentation clock that intrinsically oscillates within presomitic mesoderm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic expression patterns of the pudgy/spondylocostal dysostosis gene Dll3 in the developing nervous system

Defects in the Notch pathway ligand Dll3 have been identified in the mouse pudgy (Dll3(pu)) and human spondylocostal dysostosis (SD, MIM 277300) mutations. Although these mutations are primarily associated with segmental defects in the axial skeleton and somitic patterning, they also exhibit cranial neurological defects. Therefore we have looked at the expression of Dll3 in the developing mouse...

متن کامل

Notch inhibition by the ligand DELTA-LIKE 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis.

Mutations in the DELTA-LIKE 3 (DLL3) gene cause the congenital abnormal vertebral segmentation syndrome, spondylocostal dysostosis (SCD). DLL3 is a divergent member of the DSL family of Notch ligands that does not activate signalling in adjacent cells, but instead inhibits signalling when expressed in the same cell as the Notch receptor. Targeted deletion of Dll3 in the mouse causes a developme...

متن کامل

Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 in vivo

The Notch ligands Dll1 and Dll3 are coexpressed in the presomitic mesoderm of mouse embryos. Despite their coexpression, mutations in Dll1 and Dll3 cause strikingly different defects. To determine if there is any functional equivalence, we replaced Dll1 with Dll3 in mice. Dll3 does not compensate for Dll1; DLL1 activates Notch in Drosophila wing discs, but DLL3 does not. We do not observe evide...

متن کامل

Canine Disorder Mirrors Human Disease: Exonic Deletion in HES7 Causes Autosomal Recessive Spondylocostal Dysostosis in Miniature Schnauzer Dogs

Spondylocostal dysostosis is a congenital disorder of the axial skeleton documented in human families from diverse racial backgrounds. The condition is characterised by truncal shortening, extensive hemivertebrae and rib anomalies including malalignment, fusion and reduction in number. Mutations in the Notch signalling pathway genes DLL3, MESP2, LFNG, HES7 and TBX6 have been associated with thi...

متن کامل

Novel mutations in DLL3, a somitogenesis gene encoding a ligand for the Notch signalling pathway, cause a consistent pattern of abnormal vertebral segmentation in spondylocostal dysostosis.

The spondylocostal dysostoses (SCD) are a group of disorders characterised by multiple vertebral segmentation defects and rib anomalies. SCD can either be sporadic or familial, and can be inherited in either autosomal dominant or recessive modes. We have previously shown that recessive forms of SCD can be caused by mutations in the delta-like 3 gene, DLL3. Here, we have sequenced DLL3 in a seri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 129 7  شماره 

صفحات  -

تاریخ انتشار 2002